hadoop?mapreduce實(shí)現(xiàn)單詞計(jì)數(shù)(word?count)
1.map與reduce過(guò)程
1.1 map過(guò)程
首先,hadoop會(huì)把輸入數(shù)據(jù)劃分成等長(zhǎng)的輸入分片(input split)或分片發(fā)送到mapreduce。hadoop為每個(gè)分片創(chuàng)建一個(gè)map任務(wù),由它來(lái)運(yùn)行用戶自定義的map函數(shù)以分析每個(gè)分片中的記錄。在我們的單詞計(jì)數(shù)例子中,輸入是多個(gè)文件,一般一個(gè)文件對(duì)應(yīng)一個(gè)分片,如果文件太大則會(huì)劃分為多個(gè)分片。map函數(shù)的輸入以<key, value>形式做為輸入,value為文件的每一行,key為該行在文件中的偏移量(一般我們會(huì)忽視)。這里map函數(shù)起到的作用為將每一行進(jìn)行分詞為多個(gè)word,并在context中寫入<word, 1>以代表該單詞出現(xiàn)一次。
map過(guò)程的示意圖如下:
mapper代碼編寫如下:
public static class tokenizermapper extends mapper<object, text, text, intwritable> { private final static intwritable one = new intwritable(1); private text word = new text(); public void map(object key, text value, context context) throws ioexception, interruptedexception { //每次處理一行,一個(gè)mapper里的value為一行,key為該行在文件中的偏移量 stringtokenizer iter = new stringtokenizer(value.tostring()); while (iter.hasmoretokens()) { word.set(iter.nexttoken()); // 向context中寫入<word, 1> context.write(word, one); system.out.println(word); } } }
如果我們能夠并行處理分片(不一定是完全并行),且分片是小塊的數(shù)據(jù),那么處理過(guò)程將會(huì)有一個(gè)好的負(fù)載平衡。但是如果分片太小,那么管理分片與map任務(wù)創(chuàng)建將會(huì)耗費(fèi)太多時(shí)間。對(duì)于大多數(shù)作業(yè),理想分片大小為一個(gè)hdfs塊的大小,默認(rèn)是64mb。
map任務(wù)的執(zhí)行節(jié)點(diǎn)和輸入數(shù)據(jù)的存儲(chǔ)節(jié)點(diǎn)相同時(shí),hadoop的性能能達(dá)到最佳,這就是計(jì)算機(jī)系統(tǒng)中所謂的data locality optimization(數(shù)據(jù)局部性優(yōu)化)。而最佳分片大小與塊大小相同的原因就在于,它能夠保證一個(gè)分片存儲(chǔ)在單個(gè)節(jié)點(diǎn)上,再大就不能了。
1.2 reduce過(guò)程
接下來(lái)我們看reducer的編寫。reduce任務(wù)的多少并不是由輸入大小來(lái)決定,而是需要人工單獨(dú)指定的(默認(rèn)為1個(gè))。和上面map不同的是,reduce任務(wù)不再具有本地讀取的優(yōu)勢(shì)————一個(gè)reduce任務(wù)的輸入往往來(lái)自于所有mapper的輸出,因此map和reduce之間的數(shù)據(jù)流被稱為shuffle(洗牌)。hadoop會(huì)先按照key-value對(duì)進(jìn)行排序,然后將排序好的map的輸出通過(guò)網(wǎng)絡(luò)傳輸?shù)絩educe任務(wù)運(yùn)行的節(jié)點(diǎn),并在那里進(jìn)行合并,然后傳遞到用戶定義的reduce函數(shù)中。
reduce 函數(shù)示意圖如下:
reducer代碼編寫如下:
public static class intsumreducer extends reducer<text, intwritable, text, intwritable>{ private intwritable result = new intwritable(); public void reduce(text key, iterable<intwritable> values, context context) throws ioexception, interruptedexception{ int sum = 0; for (intwritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } }
2.完整代碼
2.1 項(xiàng)目架構(gòu)
關(guān)于vscode+java+maven+hadoop開(kāi)發(fā)環(huán)境搭建,可以參見(jiàn)我的博客《vscode+maven+hadoop開(kāi)發(fā)環(huán)境搭建》,此處不再贅述。這里展示我們的項(xiàng)目架構(gòu)如下:
word-count-hadoop
├─ input
│ ├─ file1
│ ├─ file2
│ └─ file3
├─ output
├─ pom.xml
├─ src
│ └─ main
│ └─ java
│ └─ wordcount.java
└─ target
wordcount.java代碼如下:
import java.io.ioexception; import java.util.stringtokenizer; import org.apache.hadoop.fs.filesystem; import org.apache.hadoop.conf.configuration; import org.apache.hadoop.fs.path; import org.apache.hadoop.io.intwritable; import org.apache.hadoop.io.text; import org.apache.hadoop.mapreduce.job; import org.apache.hadoop.mapreduce.mapper; import org.apache.hadoop.mapreduce.reducer; import org.apache.hadoop.mapreduce.lib.input.fileinputformat; import org.apache.hadoop.mapreduce.lib.output.fileoutputformat; public class wordcount{ public static class tokenizermapper extends mapper<object, text, text, intwritable> { private final static intwritable one = new intwritable(1); private text word = new text(); public void map(object key, text value, context context) throws ioexception, interruptedexception { //每次處理一行,一個(gè)mapper里的value為一行,key為該行在文件中的偏移量 stringtokenizer iter = new stringtokenizer(value.tostring()); while (iter.hasmoretokens()) { word.set(iter.nexttoken()); // 向context中寫入<word, 1> context.write(word, one); } } } public static class intsumreducer extends reducer<text, intwritable, text, intwritable>{ private intwritable result = new intwritable(); public void reduce(text key, iterable<intwritable> values, context context) throws ioexception, interruptedexception{ int sum = 0; for (intwritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(string[] args) throws exception{ configuration conf = new configuration(); job job = job.getinstance(conf, "word_count"); job.setjarbyclass(wordcount.class); job.setmapperclass(tokenizermapper.class); //此處的combine操作意為即第每個(gè)mapper工作完了先局部reduce一下,最后再全局reduce job.setcombinerclass(intsumreducer.class); job.setreducerclass(intsumreducer.class); job.setoutputkeyclass(text.class); job.setoutputvalueclass(intwritable.class); //第0個(gè)參數(shù)是輸入目錄,第1個(gè)參數(shù)是輸出目錄 //先判斷output path是否存在,如果存在則刪除 path path = new path(args[1]);// filesystem filesystem = path.getfilesystem(conf); if (filesystem.exists(path)) { filesystem.delete(path, true); } //設(shè)置輸入目錄和輸出目錄 fileinputformat.addinputpath(job, new path(args[0])); fileoutputformat.setoutputpath(job, new path(args[1])); system.exit(job.waitforcompletion(true)?0:1); } }
pom.xml中記得配置hadoop的依賴環(huán)境:
... <!-- 集中定義版本號(hào) --> <properties> <project.build.sourceencoding>utf-8</project.build.sourceencoding> <maven.compiler.source>17</maven.compiler.source> <maven.compiler.target>17</maven.compiler.target> <hadoop.version>3.3.1</hadoop.version> </properties> <dependencies> <dependency> <groupid>junit</groupid> <artifactid>junit</artifactid> <version>4.11</version> <scope>test</scope> </dependency> <!-- 導(dǎo)入hadoop依賴環(huán)境 --> <dependency> <groupid>org.apache.hadoop</groupid> <artifactid>hadoop-common</artifactid> <version>${hadoop.version}</version> </dependency> <dependency> <groupid>org.apache.hadoop</groupid> <artifactid>hadoop-hdfs</artifactid> <version>${hadoop.version}</version> </dependency> <dependency> <groupid>org.apache.hadoop</groupid> <artifactid>hadoop-mapreduce-client-core</artifactid> <version>${hadoop.version}</version> </dependency> <dependency> <groupid>org.apache.hadoop</groupid> <artifactid>hadoop-client</artifactid> <version>${hadoop.version}</version> </dependency> <dependency> <groupid>org.apache.hadoop</groupid> <artifactid>hadoop-yarn-api</artifactid> <version>${hadoop.version}</version> </dependency> </dependencies> ... </project>
此外,因?yàn)槲覀兊某绦蜃詭л斎雲(yún)?shù),我們還需要在vscode的launch.json中配置輸入?yún)?shù)intput(代表輸入目錄)和output(代表輸出目錄):
... "args": [ "input", "output" ], ...
編譯運(yùn)行完畢后,可以查看output文件夾下的part-r-00000文件:
david 1
goodbye 1
hello 3
tom 1
world 2
可見(jiàn)我們的程序正確地完成了單詞計(jì)數(shù)的功能。
以上就是hadoop mapreduce實(shí)現(xiàn)單詞計(jì)數(shù)(word count)的詳細(xì)內(nèi)容,更多關(guān)于hadoop mapreduce的資料請(qǐng)關(guān)注碩編程其它相關(guān)文章!